DIFFERENTIAL CONTROLLER FOR TWO TEMPERATURES OR TWO 0... 10 V-SIGNALS

C 4 BUS

DDM 328 Eng.

\author{

- Modulating or On-Off in two stages in relation to the difference between :
 - two $0 . . .100^{\circ} \mathrm{C}(\mathrm{NTC} 10 \mathrm{~K} \Omega$) temperatures or
 - two 0... 10 V - signals (e.g. : humidity, levels, pressures)
 - Communication systems :
 - C-Bus for telemanagement
 - Power supply 230 V a.c. (or 240 V a.c. for UK market), DIN rail mounting
}

1. APPLICATION

Examples of use :

- Control diffusors in relation to difference between flow/room temperatures.
- Control air dampers in relation to difference between outside/room humidity.
- Control circulation pumps in relation to difference between flow/return temperatures.

Via C-Bus DDM 328 can form part of a telemanagement system.
2. FUNCTIONS

DDM 328 obtains, in relation to the difference between two temperatures $0 . . .100^{\circ} \mathrm{C}$ or between two $0 \ldots 10 \mathrm{~V}$ - signals :

- One progressive 0... 10 V - signal (always present) and
- One 3-wire modulating signal or On-Off in two stages or On-Off for minimum and maximum limit.

3. TECHNICAL DATA

- Electrical

Power supply

Frequency

Consumption
Protection
Radio disturbances
Vibration test
Voltage-free output contacts:
Maximum switched voltage
Maximum switched current
Maximetion standards (1) A
Construction standards Italian Electrotech. Committee (CEI)
Software
Class A

- Mechanical

Enclosure
Mounting
Materials:
Base
Cover
Ambient temperature:
Operating
Storage
Ambient humidity

Weight

- Measurement ranges

Temperature :
range
$0 . .99 .9^{\circ} \mathrm{C}$
resolution
Signals 0... 10 V - :
range
0...99.9 \%
resolution
0.1 \%

DIN 3E module on DIN 35 rail

NYLON
ABS

- Setting ranges

Set-point difference of :

temperatures	$0 \ldots 10 \ldots 99.9^{\circ} \mathrm{C}$
$0 \ldots 10 \mathrm{~V}$-signals	$0 \ldots 10 \ldots 99.9 \%$

$0 . .10 \mathrm{~V}$ - signals
On-Off setting limits :
On Ymin
0...99.9 ${ }^{\circ} \mathrm{C} / \%$

Off $Y_{\text {min }}$
On Ymax
Off Ymax
Relay control output:
$0 . .10 \mathrm{~V}$ - control output :
Type of action outputs :
Proportional Band
integral time
0...5... $99.9^{\circ} \mathrm{C} / \%$
$0 . . .99 .9^{\circ} \mathrm{C} / \%$
0...95...99.9 ${ }^{\circ} \mathrm{C} / \%$

- 3-wire modulating
- On-Off in two stages
- On-Off limits
always in operation
- Direct
- Reverse

Actuator run time
Neutral zone modulation
Dead zone for input signal
$\pm 0,5 \ldots 2 \ldots 9{ }^{\circ} \mathrm{C} / \%$

- - ... 10... 255 min
15...90... 999 s
$\pm 0 \ldots 3 \ldots 10 \%$
$\pm 0 . . .50^{\circ} \mathrm{C} / \%$
In the presence of electrical disturbances the output controls of the controller may change status but this will automatically return to normal.

4. DETECTORS AND ACCESSORIES

No.	Description	Type	Measurement ranges	Code	Data shee
2	Immersion-type temperature detector	SIH 010	$0 \ldots 100^{\circ} \mathrm{C}$	B1-B2	N 140
	Room temperature detector	SAB 010	$0 \ldots 40^{\circ} \mathrm{C}$	B1-B2	N 111
	Duct-mounting temperature detector	STA 010	$0 \ldots 100^{\circ} \mathrm{C}$	B1-B2	N 150
	Duct-mounting relative humidity \& temperature detector	SUT 714	$10 \ldots 90$ RH $\%$	B3-B4	N 222
	Duct-mounting relative humidity detector	SUR 704	$20 \ldots 80$ RH $\%$	B3-B4	N 221
	Room relative humidity detector	SAU 012	$20 \ldots 80$ RH \%	B3-B4	N 225

5. OVERALL DIMENSIONS

6. FACIA

1 - Three-digit numerical display
2 - + and - keys
$3-\leftarrow$ and \rightarrow keys
LEDs:
4 - Three-wire modulating control
5 - On-Off control in two stages
4+5 - On-Off limit control
6 - Measurements by $0 \ldots 100^{\circ} \mathrm{C}$ temperature detectors
7 - Measurements by $0 \ldots 10 \mathrm{~V}$ - detectors
$6+7-$ Value modulating neutral zone
8 - Modulation Opens or On $1^{\text {st }}$ stage or On min. limit
9 - Modulation Closes or On $2^{\text {nd }}$ stage or On max. limit
10 - Value Proportional Band or value of On limits
11 - Value Integral Time or value of Off limits
10+11 - Actuator run time

7. COMMUNICATION

7.1 C-Bus communication for telemanagement (for detailed information please see data sheet T 021)

Via C-Bus output DDM 328 can be telemanaged (two-way transmission of data) using one or more local PCs and/or a remote central station via telephone landlines.
From the PC(s) you can see and/or modify :

- the setting data of the controller and the value measured by the detector
- status of the control outputs

7.2 C-Bus electrical connections

7.3 Telemanagement address

Under telemanagement, in order for the controllers to be identified by the central PC and/or by the local PCs, they must be assigned progressive address numbers.
For setting the address, see sections 13.1 or 13.2.

8. SCHEMI ELETTRICI

B1 - NTC $10 \mathrm{k} \Omega$ temperature detector (high)
B2 - NTC $10 \mathrm{k} \Omega$ temperature detector (low)
B3 - 0... 10 V - detector (high)
B4 - 0... 10 V - detector (low)
The pair of detectors B1-B2 can be used as an alternative to the pair B3-B4 and vice versa.

W1 - Output relay :

- modulating control opens (dip-switch 3 on On)
- $1^{\text {st }}$ stage control (dip-switch 3 on Off and 4 on On)
- minimum limit control (dip-switch 3 on Off and 4 on Off)

W2 - Output relay :

- modulating control closes (dip-switch 3 on On)
- $2^{\text {nd }}$ stage control (dip-switch 3 on Off and 4 on On)
- maximum limit control (dip-switch 3 on Off and 4 on Off)

Y - Progressive actuator 0... 10 V-
Y1 - 3-wire modulating actuator
Y2 - Electric load in two stages
Ymin - On-Off control for minimum limit
Ymax - On-Off control for maximum limit
8.1 Examples of control outputs (the progressive output $\mathrm{M}-\mathrm{Y} 0 . . .10 \mathrm{~V}$ - is always present

3-wire modulating

On-Off in two stages

On-Off limits

9. INSTALLATION

DDM 328 must be installed in a dry space that respects the relevant environmental conditions included under 3.Technical Data. If installed in a location classified as "Hazardous" it must be installed in a cabinet for electrical equipment constructed according to the regulations in force for the class of danger concerned.

It can be mounted on a DIN rail or in a DIN modular enclosure.

10. ELECTRICAL CONNECTIONS

Proceed as follows :

- Separate base from cover after having loosened the securing screws
- Mount the base on the DIN rail and check that it is firmly anchored by the securing elements (5.4)
- Carry out the wiring according to the diagram and in compliance with current regulations and using :
$-1.5 \mathrm{~mm}^{2}$ wires for power supply and relay control outputs.
$-1 \mathrm{~mm}^{2}$ wires for the detectors.
$-1 \mathrm{~mm}^{2}$ for C-Bus. For length limits see data sheet T 021
- Apply power (230 V a.c.; or 240 V a.c. for UK market) and check its presence across terminals L and N .
- Remove power, replace cover on base/terminal block and secure it with the two screws supplied (5.3).

You are advised not to insert more than two cables in a single terminal of the controller and, if necessary, to use an external junction box

11. EXAMPLES OF INSTALLATIONS

11.1 Control flow from diffusors in relation to difference between temp. of flow (B1 high) and that of room (B2 low) in order to avoid air stratification during the heating period.
e.g. With $\mathrm{dt}^{\circ}=5^{\circ} \mathrm{C}$: horizontal flow, with $\mathrm{dt}^{\circ}=25^{\circ} \mathrm{C}$: vertical flow. $\mathrm{Dt}^{\circ}=15^{\circ} \mathrm{C}, \mathrm{PB}= \pm 10^{\circ} \mathrm{C}, \mathrm{IT}=--$

B1 - Flow temperature detector (high)
B2 - Room temperature detector (low)
Y1 - Diffusor actuator with 3-wire control
Y - Diffusor actuator with 0... 10 V - control
11.2 Control outside air dampers in relation to difference between room humidity (B3 high) and outside humidity (B4 low) in order to avoid using outside air that is too humid.. e.g. With $\mathrm{d} \%=0 \%$: closed outside air, with $\mathrm{d} \%=30 \%$: outside air open. $\mathrm{D} \%=15 \%, \mathrm{~PB}= \pm 15 \%, \mathrm{IT}=-\mathrm{-}=$

11.3 Control speed pump in relation to difference between flow temp. (B1 high) and return temp. (B2 low) in order to adapt the flow of distribution plant to requirements of DHW/heating/etc circuits. e.g. With $\mathrm{dt}^{\circ}=10^{\circ} \mathrm{C}$: minimum speed, with $\mathrm{dt}^{\circ}=40^{\circ} \mathrm{C}$: maximum speed. $\mathrm{Dt}^{\circ}=25^{\circ} \mathrm{C}, \mathrm{PB}= \pm 15^{\circ} \mathrm{C}, \mathrm{IT}=10 \mathrm{~min}$.

B1 - Flow temperature detector (high)
B2 - Return temperature detector (low)
Y - Inverter pump with 0... 10 V - control

12. OPERATION

DDM 328 measures the difference between:

- two temperatures measured by NTC $10 \mathrm{k} \Omega$ detectors: B1 higher temp, B2 lower temp. or
- two 0... 10 V- signals: B3 greater signal, B4 smaller signal.

Compares the actual difference dt° or $\mathrm{d} \%$ with desired value Dt° or $\mathrm{D} \%$ and calculates with P or PI characteristic and with Direct action (dip-switch 2 on On) or reversed (dip-switch 2 on Off) the value of the control output in relation to the parameters set:

- Proportional Band PB
- Integral Time IT (to have operating characteristic P set - . .-)
- Actuator run time (only if relay control is 3 -wire modulating (dip-switch 3 on On).

The control outputs can be :

- Progressive control with 0... 10 V - signal (always present)
- Relay controls W1 and W2:
- 3 -wire modulating (with dip 3 on On)
or
- On-Off in two stages (with dip 3 on Off and 4 on On)
or
- On-Off with minimum and maximum limit (with dip 3 on Off and 4 on Off)
12.1 Progressive control 0... 10 V - (always present)

Output Y-M : signal 0... 10 V-

Dip-switch settings :

- Action outputs :

2 On = Direct
2 Off = Reverse

12.2 Modulating relay 3-wire control

Control opens $=1-3$ closed, 2-3 open
Control closes $=4-6$ closed, $5-6$ open
Dip-switch settings :

- Action outputs :

2 On = Direct
2 Off = Reverse

- Type control

3 On = 3-wire modulating

12.3 On-Off relay control in two stages

Control $1^{\text {st }}$ stage $=1-3$ closed, $2-3$ open
Control $2^{\text {nd }}$ stage $=4-6$ closed, $5-6$ open
Dip-switch settings :

- Action outputs :

2 On = Direct
2 Off = Reverse

- Type control

3 Off = On-Off

- Type control On-Off

4 On = 2 stages

12.4 On-Off relay limit control

Control minimum limit = 1-3 closed, 2-3 open
Control maximum limit $=4-6$ closed, $5-6$ open
Dip-switch settings :

- Type control
$3 \mathrm{Off}=\mathrm{On}-\mathrm{Off}$
- Type control On-Off 4 Off = limits

Direct action

Direct action

Direct action

Reverse action

Reverse action

Reverse action

13. CONFIGURATION

At delivery it is programmed as follows:: - difference in temperature

- direct action
- three-wire modulating

It is essential to configure the controller in relation to its use by means of the dip-switch programmer on its base. Black indicates the position of the dip-switch cursor (white on the actual controller).

Dip-switches	Functions	Description	Position of dip-swiches
\square	Type of measurement	Temperature difference $0 . . .100^{\circ} \mathrm{C}$ Difference of $0 . .10 \mathrm{~V}$ - signals	$\begin{aligned} & 10 \mathrm{On} \\ & 1 \mathrm{Off} \end{aligned}$
	Type of action of outputs	Direct Reverse	$\begin{aligned} & 2 \text { On } \\ & 2 \text { Off } \end{aligned}$
	Type of relay control	3-wire modulating On - Off	$\begin{aligned} & 3 \text { On } \\ & 3 \text { Off } \end{aligned}$
	Type of On-Off control	2 stages Limits	3 Off and 4 On 3 Off and 4 Off

14. SETTING PARAMETERS

The setting parameters must be entered after having completed the electric wiring and configured the dip-switches (section 13.).

The display normally shows :

- the temperature difference in ${ }^{\circ} \mathrm{C}$ between the measurement of B 1 (greater) and the measurement of B2 (smaller) if dip-switch 1 is On and detectors B1 and B2 connected (LED 6.6 lit). When the value measured by a detector is off the scale (interrupted or short circuit), on the display will appear three dashes alternating with the letter A (high) or b (low).
or
- the difference in \% of the $0 \ldots 10 \mathrm{~V}$ - signal between the value of B3 (greater) and the value of B4 (smaller) if dip-switch 1 is on Off and B3 and B4 detectors are connected (LED 6.7 lit).

The \bigodot and Θ keys permit viewing the setting parameters (display flashing)
The \oplus and \bigodot keys permit adjusting the parameters shown on the display.
The type of parameter shown on the display is indicated by the lighting up or flashing of the relative LED.
If for 60 seconds no key is pressed, the display again shows the difference value in ${ }^{\circ} \mathrm{C}$ or in $\%$
To revert to the default values (factory settings) switch off the power to the controller and then switch it on again whilst keeping pressed \bigodot and Θ keys until on the display appears "ini" and the controller version (e.g. 001), and then release the keys.
14.1 Modulating relay control (dip-switch 3 on On; LED 6.4 lit)

or

On-Off in 2 stages (dip-switch 3 on Off and 4 on On; LED 6.5 lit)
Display fixed with actual difference $\mathbf{d t}^{\circ}$ (dip-switch 1 on On; LED 6.6 lit) or d\% (dip-switch 1 on Off; LED 6.7 lit).
Press Θ : Display flashing with desired temperature difference $\mathbf{D t}{ }^{\circ}$ or difference $0 \ldots 10 \mathrm{~V}$ - signals desired $\mathbf{D} \%$. Adjust with \oplus or Θ (resolution $0.1^{\circ} \mathrm{C} / \%$).
Press Θ : Display with value measured by detector B1 or B3 alternating with the abbreviation "A" (high).
Press Θ : Display with value measured by detector B2 or B4 alternating with the abbreviation "b" (low).
Keep pressed Θ until display shows - - - , and release the key :
Display flashing with value of Proportional Band PB. $\left(\pm^{\circ} \mathrm{C}\right)$
LED "PB" (6.10) lit. Adjust with \bigodot or \bigodot (resolution $0.1^{\circ} \mathrm{C}$ or \%).

Press Θ	Display flashing with value of Integral Time ti. LED "ti" (6.11) lit. Adjust with $\bigodot \circ \bigodot$ (resolution 1 minute). To have P characteristic enter -
Press Θ	Display flashing with value of Dead Zone of input signal LED 6.6 and 6.7 lit. Adjust with $\oplus \circ \bigodot$ (resolution 0.1%).
Press Θ	Display flashing with value of run time of actuator (only if Modulating) LED "PB" (6.10) and "ti" (6.11) lit. Adjust with \oplus or \bigodot (resolution one second).
Press Θ	Display flashing with value of Neutral Zone (only if Modulating) LED 6.6 and 6.7 flashing. Adjust with \oplus or Θ (resolution 0.1%).
Press Θ	Display flashing with telemanagement address All LEDs flashing. Adjust with \bigodot or \bigodot.
Press Θ :	Display fixed with actual value of $\mathbf{d t}^{\circ}$ or $\mathbf{d \%}$; appears, however, if for 60 seconds no key is pressed

13.2 Control with On-Off limit relay (dip-switch 3 on Off and 4 on Off; LEDs 6.4 and 6.5 lit)

Display fixed with actual difference $\mathbf{d t}^{\circ}$ (dip-switch 1 on On; LED 6.6 lit) or d\% (dip-switch 1 on Off; LED 6.7 lit)
Press Θ : Display flashing with desired temperature difference Dt° or difference $0 \ldots 10 \mathrm{~V}$ - signal desired $\mathbf{D} \%$. Adjust with \oplus or \bigodot (resolution $0,1^{\circ} \mathrm{C} / \%$).
Press Θ : Display with value measured by detector B1alternating with abbreviation "b1" or with value of signal B3 alternating with abbreviation "b3"
Press Θ : Display with value measured by detector B 2 alternating with abbreviation " b 2 " or with value of signal B4 alternating with abbreviation "b4"
Keep pressed Θ until the display shows - - - , and the release key :
Display flashing with value of Proportional Band PB of output Y $0 \ldots 10-\mathrm{V}$. LED "PB" (6.10) lit. Adjust with \oplus or Θ (resolution $0.1^{\circ} \mathrm{C}$ or \%).
Press Θ : Display flashing with value of Integral Time ti of output $\mathbf{Y} 0 \ldots 10 \mathrm{~V}-$. LED "ti" (6.11) lit. Adjust with \oplus or \bigodot (resolution 1 minute). To have P characteristic enter - - -
Press Θ : Display flashing with value of Dead Zone of input signal LED 6.6 and 6.7 lit . Adjust with \oplus or \bigodot (resolution 0.1%).
Press Θ : Display flashing with desired value On Ymin for minimum On Limit. LED "On" (6.10) lit and LED "min" (6.8) lit. Adjust with \oplus or \bigodot.
Press Θ : Display flashing with desired value Off Ymin for minimum Off Limit. LED "Off" (6.11) lit and LED "min" (6.8) lit. Adjust with \bigodot or \bigodot.
Press Θ : Display flashing with desired value On Ymax for maximum On Limit. LED "On" (6.10) lit and LED "max" (6.9) lit. Adjust with \oplus or \bigodot.
Press Θ : Display flashing with desired value Off Ymax for maximum Off Limit. LED "Off" (6.11) lit and LED "max" (6.9) lit. Adjust with \bigodot or \bigodot.
Press Θ : Display flashing with telemanagement address All LEDs flashing. Adjust with \bigodot or \bigodot.
Press Θ : Display fixed with actual value of $\mathbf{d t}^{\circ}$ or $\mathbf{d} \%$; appears, however, if for 60 seconds no key is pressed.

Amendment to data sheet

Date	Revision No.	Page	Section	Amendment description
13.06 .07 AM	$\mathbf{0 1}$	1	3. TECHNICAL DATA	Update "Frequency" data

	Head Office \& Sales	
	Via San G.B. De La Salle, 4/a	Tel. +39 022722121
	20132 - Milano	Fax +39022593645
CONTROLLI TEMPERATURA ENERGIA COSTER TECNOLOGIE ELETTRONICHE S.p.A.	Orders	Fax +39 0227221239
	Reg. Off. Central \& Southern	
	Via S. Longanesi, 14	Tel. +39 065573330
	00146 - Roma	Fax +39065566517
	Shipping	
	Via Gen. Treboldi, 190/192	Tel. +39 0364773200
	25048 - Edolo (BS)	Tel. +39 0364773202
	E-mail: info@coster.info	Web: www.coster.eu

